Aquatic microcosms datasheet - CEREEP-Ecotron IleDeFrance

Summary and figures

The aquatic microcosms facility of the Ecotron IleDeFrance includes (1) single glass vessels of 2L designed for microbial ecosystems studies in the laboratory, (2) double glass vessels of 2L and 5L designed to perform experiments on zooplankton and microalgae trophic interactions in the laboratory, and (3) stainless steel tanks of 6L available for studies on small-scale aquatic and terrestrial ecosystems in the Ecolab (see Figure 1 and Ecolab datasheet in the dedicated web page). The three systems offer complementary opportunities for research under controlled conditions on aquatic ecosystems dominated by microorganisms (see Specification table below).

Figure 1. Photographs of existing laboratory facilities at Ecotron IleDeFrance. Top, single glass 2L vessels dedicated to laboratory experimentation on microbial ecosystems in a temperature-controlled room. Bottom, design of the stainless steel tanks including one water column (here, topped with a closed atmospheric compartment) to grow microbial communities and one reservoir to store the growth medium. Several tanks can be installed in a mesocosm filled with controlled-temperature water and nurtured in an environmental chamber.

Specification table of aquatic microcosms facility (Ecotron IleDeFrance)

	Aquatic microcosms - Ecotron IleDeFrance
General characteristics	
Design	Three differently fashioned equipments:
G	1. simple glass vessels dedicated to microalgae / bacteria/ viruses laboratory
	experimentation;
	2. double glass systems, each one composed of two connectible vessels, dedicated
	to coupled phytoplancton-zooplankton laboratory experimentation or
	experimentation on habitat fragmentation;
	3. stainless steel systems, each one composed of two cylindrical containers,
	adapted to work in the environmental chambers of the Ecolab
Dimensions	1. Simple glass vessel volume: 2 L
	2. Double glass vessel volume: one 2L and one 5L vessel
	3. Stainless steel containers: 7 L (net volume: 6L)
Replicates	1. 13 independent glass vessels
	2. 4 independent double glass vessels
	3. 36 independent systems shared on >3 Ecolab chambers (<12 per chamber)
Confinement	Sealed vessels for sterile cultures
	2. Closed vessels for confined cultures
	3. Open top containers for use in a climate room with controlled climate and
	atmospheric conditions with an optional top chamber for gas exchange measures
Environment cor	ntrol – continuous time control
Medium	The 3 equipments can be run in continuous cultures (chemostat experiments;
turnover	medium flow controlled by peristaltic pumps) or batch cultures (no medium renewal)
Temperature	15°C to +40°C (± 0.1°C); continuous time control
	25°C to +40°C (± 0.1°C); continuous time control
	313°C to +50°C (± 0.2°C); continuous time control
Lighting	1. Neon tubes, natural daylight – specific wavelengths on demand
	2. Neon tubes, natural daylight – specific wavelengths on demand
	3. LED-lighting, plasma, and other classical technologies on demand
Water mixing	Adjustable magnetic stirring
	2. Adjustable magnetic stirring
	Light turbine stirring simulating natural vertical mixing
Atmospheric	1. No control − CO ₂ regulation system is in development
gas	2. No control − CO ₂ regulation system is in development
	3. CO ₂ : 50 - 20000 ppm ± 3 ppm (injection and absorption)
	O ₂ : 210000 - 4000 ppm ± 100 ppm (downward control, replaced with nitrogen)
	O ₃ control on demand
Instrumentation	
Temperature	Resistance thermometers (1, 2, 3)
Dissolved O ₂	Optic fibre (1, 2, 3)
рН	Glass electrode (1, 2, 3)
Light	Underwater PAR sensor (1, 2, 3) and spectrometer (1, 2, 3)
Nutrients	Spectrophotometer, continuous flow auto-analyzer (1, 2, 3)
Communities	Flow-cytometer (1, 2, 3)
Phytoplankton	Submersible spectro-fluorometer usable in the lab with specific vessels (segregation
	of 5 algal classes) (1, 2, 3)
Study systems	
Bacteria	Freshwater and marine communities. Natural populations or laboratory cultures
Microalgae	Freshwater and marine communities. Natural populations or laboratory cultures
Zooplankton	Micro-, and meso- zooplankton (Freshwater and marine)

^{*} The numbering refers to the three different set-ups mentioned in the text above. Contact the technical staff if you target other biological models.